ALMONDS
Chan, E S; Aramini, J; Ciebin, B; Middleton, D; Ahmed, R; Howes, M; Brophy, I; Mentis, I; Jamieson, F; Rodgers, F; Nazarowec-White, M; Pichette, S C; Farrar, J; Gutierrez, M; Weis, W J; Lior, I; Ellis, A; Isaacs, S. 2002. Natural or raw almonds and an outbreak of a rare phage type of Salmonella enteritidis infection. Can. Commun. Dis. Rept. 28:97-99.
Duong, C., and D. Foley. 2006. the effect of electron beam radiation on raw almonds contaminated with different Salmonella strains. 106th General Meeting of the American-Society-for-Microbiology, May 21 -25, 2006 Orlando, FL, USA, Abstracts of the General Meeting of the American Society for Microbiology. 106: 461

Uesugi, A.R., M.D. Danyluk, R.E. Mandrell, and L.J. Harris. Isolation of Salmonella Enteritidis PT 30 from a single almond orchard over a 6-year period. J. Food Prot. 70:84-89.

APPLES

Munoz, M., B. de Ancos, C. Sanchez-Moreno, and M. P. Cano. 2007. Effects of high pressure and mild heat on endogenous microflora and on the inactivation and sublethal injury of *Escherichia coli* inoculated into fruit juices and vegetable soup. *J. Food Prot.* 70:1587-1593.

APRICOTS

King, A.D., R.K. Fields, and F.P. Boyle. 1968. Dried fruits have low microbial counts. Food Engineering. 40:82

AVOCACO

BRAZIL NUT

CASHEW

COCONUT

DATE
King, A.D., R.K. Fields, and F.P. Boyle. 1968. Dried fruits have low microbial counts. Food Engineering. 40:82

FIG
King, A.D., R.K. Fields, and F.P. Boyle. 1968. Dried fruits have low microbial counts. Food Engineering. 40:82

GRAPEFRUIT

GUAVA

LEMON

LIME

MACADAMIA

MAMEY

MANGO

NECTARINE

King, A.D., R.K. Fields, and F.P. Boyle. 1968. Dried fruits have low microbial counts. *Food Engineering.* 40:82

OLIVES

ORANGES

oranges, and wiping cloths collected from public markets and street booths in Guadalajara, Mexico: incidence and comparison of analytical routes. *J. Food Prot.* 69:2595-2599.

characterization of Salmonella spp. from unpasteurized orange juices and identification of
continuous high pressure carbon dioxide system for microbial reduction in orange juice. J.
Food Sci. 70:249-254.
O157:H7 and Salmonella spp. in apple cider and orange juice. In IAFP 88th Ann. Mtg.,
Program and Abstract Book. Aug. 5-8, Minneapolis, MN. p. 50.
coli O157:H7, Salmonella, and Listera monocytogenes in fruit juices. J. Food Prot. 64:315-
320.
inactivation kinetics of Escherichia coli in orange juice. In IFT Ann. Mtg., Book of
Abstracts, New Orleans, LA. p. 78.
Munoz, M., B. de Ancos, C. Sanchez-Moreno, and M. P. Cano. 2007. Effects of high pressure
and mild heat on endogenous microflora and on the inactivation and sublethal injury of
Escherichia coli inoculated into fruit juices and vegetable soup. J. Food Prot. 70:1587-1593.
Niemira, B. A. 2001. Citrus juice composition does not influence radiation sensitivity of
Salmonella Enteritidis. J. Food Prot. 64:869-872.
serotypes on orange juices with various turbidities. J. Food Prot. 64:614-617.
storage on survival of Salmonella in concentrated orange juice. J. Food Prot. 66:1916-1919.
radiation on Escherichia coli O157:H7 (EDL 933) in fruit juices of different absorptivities. J.
Food Prot. 68:49-58.
Pao, S., E. Brown, and K. R. Schneider. 1998. Challenge studies with selected pathogenic
packinghouse processing. J. Food Prot. 61:903-906.
Pao, S., and C. L. Davis. 1999. Enhancing microbiological safety of fresh orange juice by fruit
immersion in hot water and chemical sanitizers. J. Food Prot. 62:756-760.

PAPAYA

PEACHES

King, A.D., R.K. Fields, and F.P. Boyle. 1968. Dried fruits have low microbial counts. Food Engineering. 40:82

PEAR

King, A.D., R.K. Fields, and F.P. Boyle. 1968. Dried fruits have low microbial counts. Food Engineering. 40:82

PECAN

PERSIMMON

PINE NUT

PISTACHIO

PLUM

PRUNES

King, A.D., R.K. Fields, and F.P. Boyle. 1968. Dried fruits have low microbial counts. *Food Engineering*. 40:82

WALNUT

